On Rationally Parametrized Modular Equations

نویسنده

  • ROBERT S. MAIER
چکیده

Many rationally parametrized elliptic modular equations are derived. Each comes from a family of elliptic curves attached to a genus-zero congruence subgroup Γ0(N), as an algebraic transformation of elliptic curve periods, parametrized by a Hauptmodul (function field generator). The periods satisfy a Picard–Fuchs equation, of hypergeometric, Heun, or more general type; so the new modular equations are algebraic transformations of special functions. When N = 4, 3, 2, they are modular transformations of Ramanujan’s elliptic integrals of signatures 2, 3, 4. This gives a modern interpretation to his theories of integrals to alternative bases: they are attached to certain families of elliptic curves. His anomalous theory of signature 6 turns out to fit into a general Gauss–Manin rather than a Picard–Fuchs framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular equations for Lubin-Tate formal groups at chromatic level 2

gives an equation for a curve that represents the moduli problem [Γ0(p)] for elliptic curves over a perfect field of characteristic p. This moduli problem associates to such an elliptic curve its finite flat subgroup schemes of rank p. A choice of such a subgroup scheme is equivalent to an isogeny from the elliptic curve with a prescribed kernel. The j-invariants of the source and target curves...

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

Second order quasilinear PDEs and conformal structures in projective space

We investigate second order quasilinear equations of the form fijuxixj = 0, where u is a function of n independent variables x1, ..., xn, and the coefficients fij depend on the first order derivatives p = ux1 , ..., p n = uxn only. We demonstrate that the natural equivalence group of the problem is isomorphic to SL(n + 1, R), which acts by projective transformations on the space P with coordina...

متن کامل

9 Second order quasilinear PDEs and conformal structures in projective space

We investigate second order quasilinear equations of the form fijuxixj = 0, where u is a function of n independent variables x1, ..., xn, and the coefficients fij depend on the first order derivatives p = ux1 , ..., p n = uxn only. We demonstrate that the natural equivalence group of the problem is isomorphic to SL(n + 1, R), which acts by projective transformations on the space P with coordina...

متن کامل

Fixed point theorem for non-self mappings and its applications in the modular ‎space

‎In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008